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Abstract 6 We develop a method to study nonlinear
models using metrics in conjunction with repeat
measurements. We illustrate this procedure by
investigating the performance of three types of
measurement-based nonlinear circuit models using two
different metrics.

I. INTRODUCTION

We generally evaluate the ability of an electrical
circuit model to predict circuit behavior with metrics,
also called error functions or optimizing functions [1-3).
For example, engineers will compute the difference
between a modelis prediction and a set of reference data
(often a measurement) and apply a metric such as a sum
of squares to this difference. The single scalar quantity
generated by the metric is intended to summarize model
performance.

In the present work, we extend the use of metrics to
evaluate deterministic models that are used to predict
measurements that have an inherent stochastic
component. Rather than looking at single values of a
metric, we look at both the mean and the distribution
obtained by applying the metric to a set of repeated
measurements. We will demonstrate that this additional
information gives insight into model performance, aiding
in the development of robust measurement-based models
that can predict measurements under realistic operating
conditions.

While this technique may be applied to the evaluation
of both linear and nonlinear circuit models, the extra
information arising from the distribution of measured
values and their corresponding metrics is particularly
helpful in the evaluation of nonlinear circuit models. For
nonlinear circuits, the state of the measurement system
itself will affect the circuit response, as discussed in [4].
For example, even slight changes in a measurement
systemis output impedance will cause a corresponding
change in the excitation across the nonlinear device,
changing the circuitis operating point. Thus, a
measurement-based nonlinear circuit model must
characterize device behavior accurately, not at just a
single point, but over a realistic range of operating
conditions around the nominal operating point.
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In the following, we describe the procedure we use to
calculate the metrics and provide model evaluation
examples for three types of deterministic, measurement-
based models. Finally, we demonstrate the use of our
metrics in a measurement round-robin application. In
this example, we see that the metrics alert us to measured
data with significant drift.

II. PROCEDURE

We first perform many measurements of an electrical
circuit under a single operating condition. This set of
measurements forms our reference data set. For each
measurement in the data set, we generate a model
prediction and compute the value of a metric that
quantifies the difference between the reference data and
the modelis prediction. We complete this procedure for
all of the measurements in the reference data set and plot
a histogram of the metric values. The mean value and
shape of the histogram give us additional information to
better quantify candidate prediction models.

In the present work, we use a set of reference data
acquired from repeated nonlinear vector network
analyzer (NVNA) (5-7] measurements made on a wafer-
level diode circuit. We generate predictions of the
measured data using three types of models: SPICE-based
compact models, and time- and frequency-domain
behavioral models [8-10]. From these predictions we
calculate values of two types of metrics for each data
point and plot them in histogram form.

To illustrate the use of these metrics in model
evaluation, we first design an optimized model within
each model type and then intentionally degrade the
model. This provides a range of agreement with
measured results that we are able to detect with the
metrics. We next describe the measured reference data,
the models, and the metrics used in this study.

A. Reference Data

We use a set of 100 repeated measurements collected
on an NVNA over eight hours. RF input power is +3
dBm on wafer, the fundamental frequency is 900 MHz,
and we collect data up to 20 GHz.
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Fig. 1. The magnitude of the measured scattered travelling voltage
wave at port 1, |by|, at the fundamental frequency /.

The wafer-level nonlinear circuit we use in these
measurements consists of two parallel Schottky diodes
connected to probe pads by 0.5 mm coplanar waveguide
(CPW) lines. The two-port diode circuit is fabricated on
an alumina substrate by bonding the beam-lead diode
package to a gold metal layer. The diode is forward
biased by 0.2 V. Figure 1 shows the magnitude of the
scattered travelling voltage measured wave at port 1 (b,)
for the reference data set at the fundamental frequency.
For purposes of demonstration, we assume here that
variation in b is due to variation in the incident wave
variable a only and is not due to measurement error. In
reality the distribution of the b data is due to both of
these effects.

A. Models

Recall that we use three types of models. For each
model type, we produce an "optimized" model and then
degrade the model in two subsequent designs to see how
its prediction of the measured data is affected. The
inputs to the model consist of the measured port 1 and
port 2 input wave variables g, and a; [4] at DC, the
fundamental, and harmonics up to 20 GHz.

1. Compact Models: Three SPICE-based models
described below are based on the diode manufactureris
parameters. The model Compact Opt is optimized in the
time domain by eye to the first measurement in our
reference data set. Model Compact RsCj is the same as
model Compact Opt with an increase in both Cjp and R,.
Model Compact Phase is the same as model Compact
RsCj with an increased CPW interconnect length that
introduces an additional phase shift error.

2. Frequency-Domain ANN Models (FD-ANN):
Artificial Neural Network (ANN) models [9,10] map
input to output variables using training (design) data and
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a set of weighting functions. - ANNs act well as
interpolators, and thus require training data that covers
the range of expected measurements. We train three-
layer ANNs with NVNA data measured at power levels
above and below our reference data set level of +3 dBm.
The inputs to the trained model consist of the measured
input wave variables @; and a, through the first four
harmonics. The optimized model, FD-ANN Opt, uses
four power levels for training: two above and two below
the reference level (2.90, 2.94, 3.06, and 3.10 dBm). This
model design has five hidden neurons (the weighting
functions are applied at the input and output of the
hidden neuron layers). Model FD-ANN 4-1 uses the
same four power levels, but only one hidden neuron.
Model FD-ANN 2-5 uses two power levels (2.9 and 3.1
dBm) for training, and has five hidden neurons.

3. Time-Domain Behavioral Models Using ANNs
(SYAR): These behavioral models [8] are developed by
finding state variable equations of a nonlinear device.
Large-signal measurements provide samples of the state
variables over the expected range of operating
conditions. State variable equations are then generated
by fitting these sample points with ANNSs. In this study,
these models are developed using the same two power
levels as FD-ANN 2-5 (2.9 and 3.1 dBm). Model SVAR
Opt uses 6 hidden neurons for the ANN, model SVAR 2-
3 uses three hidden neurons, and model SVAR Phase
introduces a phase shift error similar to model Compact
Phase.

B. Metrics

While there are many types of metrics used in
electrical circuit evaluation [11], we select two:
» The Natural Metric:

Sw(b,57) =|po ~b%o[ +2i|b,- —wf

i=1

M

= A Weighted Metric:

N .
S (6,67) = Z_Z'J:ﬁd_.llbi - &%)
=0 bj

@

j=0

Here, b; refers to the i harmonic of the measured
scattered wave variable b, b?i refers to the predicted
value, and N represents the number of harmonics. The
units of the natural metric are voltage squared, while the
units of the weighted metric are volts. The natural metric
is so called because of its equivalence in both the time
and frequency domains. The weighted metric puts more
emphasis on harmonics with more power.
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Fig. 2: Histograms of the square root of the natural metric for the
nine model designs and the data with drift discussed in Section

v.

III. MODEL EVALUATION

Histograms of the metric values obtained with the nine
different model types described above are shown in Fig.
2 (square root of natural metric) and Fig. 3 (weighted
metric). We take the square root of the natural metric so
that the two plots have the same units.

A shift in the mean of a histogram to the right
indicates worse agreement between measured and
predicted data. We see that the optimized model for each
model type has the lowest mean, and that the metrics
accurately detect deteriorating model quality for all three
model types: compact, FD-ANN, and state variable
models. We observe that the introduction of systematic
errors in the models results in a large shift of the mean to
the right; the use of fewer neurons results in a small shift
of the mean to the right; and insufficient training results
in an increased spread.

The metrics also give us insight into how various
model parameters affect model performance. For
example, we see that the phase shift error incorporated
into the models Compact Phase (line 3) and SVAR Phase
(line 9) has a more detrimental effect on the modelsi
ability to predict measured data than other types of
model design errors. In the case of the FD-ANNs, we see
that using fewer neurons (FD-ANN 4-1, line 5) has less
effect on overall model accuracy than using less training
data (FD-ANN 2-5, line 6).

Note that while one model type may appear to more
accurately predict these particular sets of measured data,
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Fig. 3: Histograms of the weighted metric for the nine model
designs and the data with drift discussed in Section IV.

another model type may be more robust in terms of
predicting measured data at other power/bias levels.
Thus, we draw no conclusion from the present work on
the overall quality of one model type over another.
However, within each model type, we can easily resolve
and rank model performance using this method.

IV. APPLICATION TO ROUND-ROBIN SCENARIO

We tested the two metrics in a measurement round
robin scenario similar to one currently under
development at NIST [4, 12]. The round robin is
intended to quantify differences in NVNA
measurements. Here we use the optimized models
developed for each model type to predict measurements
that contain a significant amount of drift.

As discussed above, our models were designed
(trained) using data with input/output relationships
similar to those we expect to encounter when the models
are used in our application. An example is shown in Fig.
4, where the black circles correspond to the incident (a;)
and scattered (b;) waves for the reference data set
discussed in Section II. We expect all of the
measurements in the round robin to follow a similar
input/output relationship. In this example, however, we
obtain a measurement where the scattered data contains
significant drift caused by changes in the RF path over
time (the red triangles in Fig. 4). This particular
input/output relationship was not used in the design of
our models. Do the metrics detect a difference for this set
of data?
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Fig. 4: Magnitude of the measured incident (a) and scattered
(b) waves at the fundamental. The black circles correspond to
the reference data set described in Section II. The red
triangles correspond to the data with drift used in the metric
comparison of Section IV.

Metric values for the data with drift, using our
optimized models, are labeled iDrifti in Figs. 2 and 3
(lines 10, 11, and 12). We see that both metrics detect
that the input/output relationship is different for this set
of data compared with their training data, shown as a
shift to the right and an increase in the histogram spread.

While both metrics indicate discrepancies between the
modeled and measured data, we notice a bimodal
distribution in the histograms corresponding to the
weighted metric. The left-most peak in the bimodal
distribution corresponds to the modelis relatively

accurate prediction of the first 60 or so data points (see

Fig. 4(b)). The right-most peak corresponds to the
modelis prediction of measured data that has drifted
outside the range over which the model was trained.
Thus, for this particular application, the weighted metric
may yield more detailed information regarding the
measured data.

V. SUMMARY

We have shown how examination of a distribution of
metric values can be used to evaluate models. The
method can aid in the development of robust
measurement-based models that can predict or discern
measured behavior under realistic operating conditions.
We presented an example showing possible application
to an NVNA round robin, and demonstrated that these
particular metrics give useful information not available
from single values of the metric. We plan to continue
work in this area, incorporating temperature effects into
the models and investigating other metrics.
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